Laboratory of Cellular Metabolism

Metabolism of healthy and tumor tissue at single cell resolution.

Kateřina Rohlenová, Ph.D.Cancer cells rewire their metabolism to satisfy the biosynthetic demands of rapid proliferation, and targeting metabolism thus represents an attractive approach to cancer therapy. Synthesis of nucleotides, the basic building blocks of DNA/RNA, can be disrupted by antimetabolites. These compounds were first introduced more than 70 years ago and represent one of the first practical approaches to cancer treatment. Yet, despite its long history and unquestionable success, antimetabolite treatment still suffers high rates of resistance and leads to toxicity in healthy tissues.

What are the reasons for resistance? While the answer to this question is not entirely known, at least part of the problem could be linked to the exchange of nucleotides within tissues. Healthy tissues as well as malignant tumors consist of number of cell types with different metabolic needs and profiles. These different cell types can metabolically communicate, e.g. one cell type can provide metabolites that are then taken up and used by another cell type in the same tissue. This crosstalk of metabolites enables collective survival in nutrient-poor environments. This may help tumor progression and metabolic crosstalk can thus limit the efficacy of metabolic interventions targeted at cancer cells.

The cellular sources of nucleotides and their building blocks in tumors and in healthy tissues are not well understood. One of the reasons is that the traditional methods of metabolic research average populations and cannot differentiate individual cell types in their natural tissue environment.

We aim to uncover how cells in tissues trade metabolites, and if healthy tissues and tumors differ in their metabolic ‘trading patterns’. Such knowledge and, especially the differences between healthy and tumor tissues, could be used to develop new therapeutic strategies that will overcome both resistance and toxicity.

We are also interested in the metabolism of quiescent cells in healthy tissues, which promotes (oxidative) stress resistance rather than biosynthesis. Characterization of metabolic pathways that support this stress resistance will contribute to reducing toxicity of cancer therapy and allow better understanding of pathologies linked to oxidative stress.

To reach our goals we combine mouse models of perturbed metabolism and single cell technologies to map the metabolic crosstalk ‘one cell at a time’ in tumors as well as in healthy tissue. Specifically, our laboratory utilizes state-of-the-art single cell approaches including single cell and spatial RNA-sequencing and metabolic MALDI imaging, combined with CRISPR screens to investigate metabolic heterogeneity in tissues. Our experimental approach gives us a unique angle to study cancer and healthy tissue metabolism from a totally new perspective and with high resolution.

DSC_3799 crop no pipe

Al ghadi Ahmad Yousef Mohammad
Dmytruk Kristina
Grishina Anastasiia, Bc.
Hyroššová Petra, Mgr., Ph.D.
Jakoubě Pavel, Mgr.
Laskowska Agnieszka
Manca Maria Antonietta
Milisav Isidora
Milošević Mirko
Novotný Ondřej, Mgr.
Páchniková Nina, Bc.
Rohlena Jakub, Mgr., Ph.D.
Rohlenová Kateřina, Mgr., Ph.D.
Stanko Róbert, Mgr.
Škoda Josef, Mgr., Ph.D.
Wong Soon Julian

2024

  • Sharma, P., Maklashina, E., Voehler, M., Balintova, S., Dvorakova, S., Kraus, M., Hadrava Vanova, K., Nahacka, Z., Zobalova, R., Boukalova, S., Cunatova, K., Mracek, T., Ghayee, H.K., Pacak, K., Rohlena, J., Neuzil, J., Cecchini, G., and Iverson, T.M. (2024). Disordered-to-ordered transitions in assembly factors allow the complex II catalytic subunit to switch binding partners. Nat Commun 15: 473. https://doi.org/10.1038/s41467-023-44563-7

  • Novotna, E., Milosevic, M., Prukova, D., Magalhaes-Novais, S., Dvorakova, S., Dmytruk, K., Gemperle, J., Zudova, D., Nickl, T., Vrbacky, M., Rosel, D., Filimonenko, V., Prochazka, J., Brabek, J., Neuzil, J., Rohlenova, K., and Rohlena, J. (2024). Mitochondrial HER2 stimulates respiration and promotes tumorigenicity. Eur J Clin Investe14174.https://doi.org/10.1111/eci.14174

2023

  • Vanickova, K., Milosevic, M., Ribeiro Bas, I., Burocziova, M., Yokota, A., Danek, P., Grusanovic, S., Chiliński, M., Plewczynski, D., Rohlena, J., Hirai, H., Rohlenova, K., and Alberich-Jorda, M. (2023). Hematopoietic stem cells undergo a lymphoid to myeloid switch in early stages of emergency granulopoiesis.The EMBO journale113527
  • Oh, S., Jo, S., Bajzikova, M., Kim, H.S., Dao, T.T.P., Rohlena, J., Kim, J.M., Neuzil, J., and Park, S. (2023). Non-bioenergetic roles of mitochondrial GPD2 promote tumor progression. Theranostics 13: 438-457
  • Hyrossova, P., Milosevic, M., Alghadi, A.Y., Kucera, L., Prochazka, J., Sedlacek, R., Rohlena, J., and Rohlenova, K. (2023). Spatial Analysis of Nucleotide Metabolism: From CRISPR Knockout Cancer Cells to MALDI Imaging of Tumors. Methods in molecular biology (Clifton, NJ) 2675: 297-308.
  • Dong, L.F., Rohlena, J., Zobalova, R., Nahacka, Z., Rodriguez, A.M., Berridge, M.V., and Neuzil, J. (2023). Mitochondria on the move: Horizontal mitochondrial transfer in disease and health. The Journal of cell biology 222.
  • Bielcikova, Z., Stursa, J., Krizova, L., Dong, L., Spacek, J., Hlousek, S., Vocka, M., Rohlenova, K., Bartosova, O., Cerny, V., Padrta, T., Pesta, M., Michalek, P., Hubackova, S.S., Kolostova, K., Pospisilova, E., Bobek, V., Klezl, P., Zobalova, R., Endaya, B., Rohlena, J., Petruzelka, L., Werner, L., and Neuzil, J. (2023). Mitochondrially targeted tamoxifen in patients with metastatic solid tumours: an open-label, phase I/Ib single-centre trial. EClinicalMedicine 57: 101873

2022

  • Hadrava Vanova, K., Pang, Y., Krobova, L., Kraus, M., Nahacka, Z., Boukalova, S., Pack, S.D., Zobalova, R., Zhu, J., Huynh, T.T., Jochmanova, I., Uher, O., Hubackova, S., Dvorakova, S., Garrett, T.J., Ghayee, H.K., Wu, X., Schuster, B., Knapp, P.E., Frysak, Z., Hartmann, I., Nilubol, N., Cerny, J., Taieb, D., Rohlena, J., Neuzil, J., Yang, C., and Pacak, K. (2022). Germline SUCLG2 Variants in Patients With Pheochromocytoma and Paraganglioma. J Natl Cancer Inst 114: 130-138.
  • Hyroššová, P., Milošević, M., Škoda, J., Vachtenheim, J., Jr., Rohlena, J., and Rohlenová, K. (2022). Effects of metabolic cancer therapy on tumor microenvironment. Front Oncol 12: 1046630.
  • Magalhaes-Novais, S., Blecha, J., Naraine, R., Mikesova, J., Abaffy, P., Pecinova, A., Milosevic, M., Bohuslavova, R., Prochazka, J., Khan, S., Novotna, E., Sindelka, R., Machan, R., Dewerchin, M., Vlcak, E., Kalucka, J., Stemberkova Hubackova, S., Benda, A., Goveia, J., Mracek, T., Barinka, C., Carmeliet, P., Neuzil, J., Rohlenova, K., and Rohlena, J. (2022). Mitochondrial respiration supports autophagy to provide stress resistance during quiescence. Autophagy 1-18.
  • Novakova, Z., Milosevic, M., Kutil, Z., Ondrakova, M., Havlinova, B., Kasparek, P., Sandoval-Acuna, C., Korandova, Z., Truksa, J., Vrbacky, M., Rohlena, J., & Barinka, C. (2022, Oct 12). Generation and characterization of human U-2 OS cell lines with the CRISPR/Cas9-edited protoporphyrinogen oxidase IX gene. Sci Rep, 12(1), 17081. https://doi.org/10.1038/s41598-022-21147-x

2021

  • Teuwen, L.A., De Rooij, L., Cuypers, A., Rohlenova, K., Dumas, S.J., García-Caballero, M., Meta, E., Amersfoort, J., Taverna, F., Becker, L.M., Veiga, N., Cantelmo, A.R., Geldhof, V., Conchinha, N.V., Kalucka, J., Treps, L., Conradi, L.C., Khan, S., Karakach, T.K., Soenen, S., Vinckier, S., Schoonjans, L., Eelen, G., Van Laere, S., Dewerchin, M., Dirix, L., Mazzone, M., Luo, Y., Vermeulen, P., and Carmeliet, P. (2021). Tumor vessel co-option probed by single-cell analysis. Cell Rep 35: 109253.
  • Sokol, L., Geldhof, V., García-Caballero, M., Conchinha, N.V., Dumas, S.J., Meta, E., Teuwen, L.A., Veys, K., Chen, R., Treps, L., Borri, M., de Zeeuw, P., Falkenberg, K.D., Dubois, C., Parys, M., de Rooij, L., Goveia, J., Rohlenova, K., Schoonjans, L., Dewerchin, M., Eelen, G., Li, X., Kalucka, J., and Carmeliet, P. (2021). Protocols for endothelial cell isolation from mouse tissues: small intestine, colon, heart, and liver. STAR Protoc 2: 100489.
  • Nahacka, Z., Zobalova, R., Dubisova, M., Rohlena, J., and Neuzil, J. (2021). Miro proteins connect mitochondrial function and intercellular transport. Crit Rev Biochem Mol Biol 56: 401-425.
  • Levoux, J., Prola, A., Lafuste, P., Gervais, M., Chevallier, N., Koumaiha, Z., Kefi, K., Braud, L., Schmitt, A., Yacia, A., Schirmann, A., Hersant, B., Sid-Ahmed, M., Ben Larbi, S., Komrskova, K., Rohlena, J., Relaix, F., Neuzil, J., and Rodriguez, A.M. (2021). Platelets Facilitate the Wound-Healing Capability of Mesenchymal Stem Cells by Mitochondrial Transfer and Metabolic Reprogramming. Cell Metab 33: 283-299.e289.
  • Ezrova, Z., Nahacka, Z., Stursa, J., Werner, L., Vlcak, E., Kralova Viziova, P., Berridge, M.V., Sedlacek, R., Zobalova, R., Rohlena, J., Boukalova, S., and Neuzil, J. (2021). SMAD4 loss limits the vulnerability of pancreatic cancer cells to complex I inhibition via promotion of mitophagy. Oncogene 40: 2539-2552.
  • Dumas, S.J., Meta, E., Conchinha, N.V., Sokol, L., Chen, R., Borri, M., Teuwen, L.A., Veys, K., García-Caballero, M., Geldhof, V., Treps, L., de Zeeuw, P., Falkenberg, K.D., Dubois, C., Parys, M., de Rooij, L., Rohlenova, K., Goveia, J., Schoonjans, L., Dewerchin, M., Eelen, G., Li, X., Kalucka, J., and Carmeliet, P. (2021). Protocols for endothelial cell isolation from mouse tissues: kidney, spleen, and testis. STAR Protoc 2: 100523.
  • Conchinha, N.V., Sokol, L., Teuwen, L.A., Veys, K., Dumas, S.J., Meta, E., García-Caballero, M., Geldhof, V., Chen, R., Treps, L., Borri, M., de Zeeuw, P., Falkenberg, K.D., Dubois, C., Parys, M., de Rooij, L., Rohlenova, K., Goveia, J., Schoonjans, L., Dewerchin, M., Eelen, G., Li, X., Kalucka, J., and Carmeliet, P. (2021). Protocols for endothelial cell isolation from mouse tissues: brain, choroid, lung, and muscle. STAR Protoc 2: 100508.

2020

  • Taverna, F., Goveia, J., Karakach, T.K., Khan, S., Rohlenova, K., Treps, L., Subramanian, A., Schoonjans, L., Dewerchin, M., Eelen, G., and Carmeliet, P. (2020). BIOMEX: an interactive workflow for (single cell) omics data interpretation and visualization. Nucleic Acids Res 48: W385-W394.
  • Rohlenova, K.*, Goveia, J.*, Garcia-Caballero, M.*, Subramanian, A.*, Kalucka, J., Treps, L., Falkenberg, K.D., de Rooij, L., Zheng, Y., Lin, L., Sokol, L., Teuwen, L.A., Geldhof, V., Taverna, F., Pircher, A., Conradi, L.C., Khan, S., Stegen, S., Panovska, D., De Smet, F., Staal, F.J.T., McLaughlin, R.J., Vinckier, S., Van Bergen, T., Ectors, N., De Haes, P., Wang, J., Bolund, L., Schoonjans, L., Karakach, T.K., Yang, H., Carmeliet, G., Liu, Y., Thienpont, B., Dewerchin, M., Eelen, G., Li, X., Luo, Y., and Carmeliet, P. (2020). Single-Cell RNA Sequencing Maps Endothelial Metabolic Plasticity in Pathological Angiogenesis. Cell Metab 31: 862-877 e814.
  • Kalucka, J., de Rooij, L., Goveia, J., Rohlenova, K., Dumas, S.J., Meta, E., Conchinha, N.V., Taverna, F., Teuwen, L.A., Veys, K., Garcia-Caballero, M., Khan, S., Geldhof, V., Sokol, L., Chen, R., Treps, L., Borri, M., de Zeeuw, P., Dubois, C., Karakach, T.K., Falkenberg, K.D., Parys, M., Yin, X., Vinckier, S., Du, Y., Fenton, R.A., Schoonjans, L., Dewerchin, M., Eelen, G., Thienpont, B., Lin, L., Bolund, L., Li, X., Luo, Y., and Carmeliet, P. (2020). Single-Cell Transcriptome Atlas of Murine Endothelial Cells. Cell 180: 764-779 e720.
  • Henrichs, V., Grycova, L., Barinka, C., Nahacka, Z., Neuzil, J., Diez, S., Rohlena, J., Braun, M., and Lansky, Z. (2020). Mitochondria-adaptor TRAK1 promotes kinesin-1 driven transport in crowded environments. Nat Commun 11: 3123.
  • Hadrava Vanova, K., Kraus, M., Neuzil, J., and Rohlena, J. (2020). Mitochondrial complex II and reactive oxygen species in disease and therapy. Redox Rep 25: 26-32.
  • Goveia, J.*, Rohlenova, K.*, Taverna, F.*, Treps, L.*, Conradi, L.C., Pircher, A., Geldhof, V., de Rooij, L., Kalucka, J., Sokol, L., Garcia-Caballero, M., Zheng, Y., Qian, J., Teuwen, L.A., Khan, S., Boeckx, B., Wauters, E., Decaluwe, H., De Leyn, P., Vansteenkiste, J., Weynand, B., Sagaert, X., Verbeken, E., Wolthuis, A., Topal, B., Everaerts, W., Bohnenberger, H., Emmert, A., Panovska, D., De Smet, F., Staal, F.J.T., McLaughlin, R.J., Impens, F., Lagani, V., Vinckier, S., Mazzone, M., Schoonjans, L., Dewerchin, M., Eelen, G., Karakach, T.K., Yang, H., Wang, J., Bolund, L., Lin, L., Thienpont, B., Li, X., Lambrechts, D., Luo, Y., and Carmeliet, P. (2020). An Integrated Gene Expression Landscape Profiling Approach to Identify Lung Tumor Endothelial Cell Heterogeneity and Angiogenic Candidates. Cancer cell 37: 21-36 e13.
  • Boukalova, S., Hubackova, S., Milosevic, M., Ezrova, Z., Neuzil, J., and Rohlena, J. (2020). Dihydroorotate dehydrogenase in oxidative phosphorylation and cancer. Biochim Biophys Acta Mol Basis Dis 1866: 165759.

2019

  • Falkenberg, K.D., Rohlenova, K., Luo, Y., and Carmeliet, P. (2019). The metabolic engine of endothelial cells. Nature Metabolism 1: 937-946.
  • Bajzikova, M., Kovarova, J. #, Coelho, A.R., Boukalova, S., Oh, S., Rohlenova, K., Svec, D., Hubackova, S., Endaya, B., Judasova, K., Bezawork-Geleta, A., Kluckova, K., Chatre, L., Zobalova, R., Novakova, A., Vanova, K., Ezrova, Z., Maghzal, G.J., Magalhaes Novais, S., Olsinova, M., Krobova, L., An, Y.J., Davidova, E., Nahacka, Z., Sobol, M., Cunha-Oliveira, T., Sandoval-Acuna, C., Strnad, H., Zhang, T., Huynh, T., Serafim, T.L., Hozak, P., Sardao, V.A., Koopman, W.J.H., Ricchetti, M., Oliveira, P.J., Kolar, F., Kubista, M., Truksa, J., Dvorakova-Hortova, K., Pacak, K., Gurlich, R., Stocker, R., Zhou, Y., Berridge, M.V., Park, S., Dong, L. #, Rohlena, J. #, and Neuzil, J. # (2019). Reactivation of Dihydroorotate Dehydrogenase-Driven Pyrimidine Biosynthesis Restores Tumor Growth of Respiration-Deficient Cancer Cells. Cell Metab 29: 399-416 e310.

2018

  • Rohlenova, K., Veys, K., Miranda-Santos, I., De Bock, K., and Carmeliet, P. (2018). Endothelial Cell Metabolism in Health and Disease. Trends Cell Biol 28: 224-236.
  • Khan, S.*, Taverna, F.*, Rohlenova, K.*, Treps, L., Geldhof, V., de Rooij, L., Sokol, L., Pircher, A., Conradi, L.C., Kalucka, J., Schoonjans, L., Eelen, G., Dewerchin, M., Karakach, T., Li, X., Goveia, J., and Carmeliet, P. (2018). EndoDB: a database of endothelial cell transcriptomics data. Nucleic Acids Resgky997-gky997.

2017

  • Rohlenova, K.*#, Sachaphibulkij, K.*, Stursa, J., Bezawork-Geleta, A., Blecha, J., Endaya, B., Werner, L., Cerny, J., Zobalova, R., Goodwin, J., Spacek, T., Alizadeh Pesdar, E., Yan, B., Nguyen, M.N., Vondrusova, M., Sobol, M., Jezek, P., Hozak, P., Truksa, J., Rohlena, J. #, Dong, L.F. #, and Neuzil, J. # (2017). Selective Disruption of Respiratory Supercomplexes as a New Strategy to Suppress Her2(high) Breast Cancer. Antioxidants & redox signaling 26: 84-103.
  • Blecha, J., Novais, S.M., Rohlenova, K., Novotna, E., Lettlova, S., Schmitt, S., Zischka, H., Neuzil, J., and Rohlena, J. (2017). Antioxidant defense in quiescent cells determines selectivity of electron transport chain inhibition-induced cell death. Free radical biology & medicine 112: 253-266.

 

*Shared first author

# Shared corresponding author

GAČR: GN24-10588I, M. A. Manca: Consequences of respiratory complex II deficiency for endothelial cell physiology. 2024 – 2026

GAČR: GA24-10167S, J. Rohlena: Tumors with no aspartate synthesis: a metabolic mystery. 2024 – 2026

GAČR: GA22-34507S, J. Rohlena: Metabolic pathways of oxidative stress resistance in endothelial cells. 2022-2024

Horizon-ERC-2021-STG: 101042031, K. Rohlenová: Intercellular trading in nucleotide metabolism: an emerging target (InterMet), 2022-2026.

EMBO: IG 5068-2022, K. Rohlenová: EMBO Installation grant, 2022-2026

H2020-MSCA-IF-2020: 101027977, K. Rohlenová: Nucleotide metabolism crosstalk in cancer: a single cell approach (MetaCross), 2022-2025.

Horizon-WIDERA-2022-TALENTS-02 101090284, P. Hyroššová: Pyrimidine de novo synthesis in tumor endothelium: an overlooked target? 2023 – 2024

AZV: NU22-07-00087, J. Rohlena: Decoding unique metabolic dispositions of malignant clones responsible for adverse prognosis in acute lymphoblastic leukemia: cancer metabolism as a new therapeutic target in leukemias. 2022 – 2025

GAČR: GA20-18513S, J. Rohlena: Respiration-Linked Metabolic Limitations of De Novo Pyrimidine Biosynthesis. 2020-2022.

GAČR: GA19-20553S, J. Rohlena: Composition and Function of CII-low, an Alternative Assembly Form of Respiratory Complex II. 2019-2021.

GAUK: 1435320, M. Milošević: Molecular consequences of complex I deficiency in cancer cells: role of the aspartate synthesis. 2020-2022

GAUK: 1552218, S. Novais: Autophagy - respiration interplay in quiescent cells.2018-2020.